全球 AI 算力龙头英伟达 Q1 业绩大超预期,盘后狂拉 30%,哪些原因影响的?
AI的「iPhone 时刻」,英伟达的「核弹发射」
近日,一年一度的英伟达 GTC 大会再度拉开帷幕。穿着标志性皮夹克的「AI 黄仁勋」向开发者介绍了英伟达在硬件和 AI 领域最新的进展。
年初的 CES 刚刚过去,对于英伟达来说,短时间就要拿出很多新的东西,挑战不小。但是从 CES 到现在,短短 3 个月里,全球 AI 领域发生了翻天覆地的变化,这也成了英伟达的新契机。
AI的「iPhone 时刻」
「AI 的『iPhone 时刻』已经到来」,老黄这样形容最近 AI 行业的「大事件」。
2016年8月,黄仁勋将当年全球第一台 AI 超算捐给了 OpenAI。6年多后,OpenAI 带着 ChatGPT搅动了整个地球。大量的新型创业公司希望借助于这股东风来颠覆既有的传统商业模式,而许多传统的科技巨头也在纷纷拥抱 AI,来维系自己的领先地位。
在 2023GTC 大会上,英伟达宣布了将和谷歌云、微软 Azure、甲骨文云联手推出 DGX 云服务。ChatGPT 将从目前使用的 A100 GPU 升级到使用微软 Azure 超级计算机用上 H100,理论上回复速度将快 10 倍。
毫无疑问,ChatGPT 将会引发新一轮的人工智能革命,其对整个汽车行业也会产生深远的影响。ChatGPT 模型也将逐渐从人机沟通逐步赋能包括自动驾驶在内的智能网联系统的各个环节。在百度推出「中国版 ChatGPT」的「文心一言」后,吸引了包括集度、长安、吉利、长城、东风日产、零跑等车企纷纷抛来合作的橄榄枝。
而在 ChatGPT 以及其他一众 AI 大模型技术的背后,都离不开英伟达在算力层面的大力支持。自从英伟达向 OpenAI 交付首台 DGX 超级计算机后,目前台 DGX 超级计算机已经成为市场上最主流的产品。最新 DGX 超级计算机的核心,是英伟达的 8 块 H100 模组。当 ChatGPT 这样的 AI 工具逐步渗透车企之后,最大的赢家之一依然会是英伟达。
联想 x 英伟达,汽车行业新亮点?
对于英伟达来说,在这次 GTC 上,和车企的合作,尤其是自动驾驶领域着墨不多。但这并不影响未来汽车领域的业务会成为英伟达的一个快速增长的新引擎。
作为如今全球可以和特斯拉齐平、最为炙手可热的新能源车企之一,比亚迪与英伟达进一步扩大合作当消息得到了官宣。比亚迪的下一代王朝系列和海洋系列中的多款车型都将使用英伟达 DRIVE Orin 高性能计算平台。其中,在今年二季度,比亚迪首款采用英伟达芯片且搭载了激光雷达的车型就将上市。
在王传福看来,作为新能源汽车的上半场,比亚迪在电动化方面凭借刀片电池赚得盆满钵满;而在新能源汽车的下半场,比亚迪选择了英伟达作为智能化方面的最重要合作伙伴之一,也是希望在芯片算力层面,能够走在市场的最前列。除了 DriveOrin 平台之外,在今年 1 月份的 CES 展上,比亚迪也作为首批合作企业,将落地英伟达旗下 GeForce NOW 云游戏服务计划。而后者也是英伟达进军智能座舱市场的最新布局。
不过让我们惊讶的是,联想成为首家采用英伟达新的自动驾驶域控制器的一级制造商,在不远的未来,其域控制器将采用英伟达的 SoC 芯片。
对于联想这样从事电脑服务器的硬件公司,进军智能电动车的高算力中央计算平台,既在意料之外,也是情理之中。对于联想来说,布局智能座舱、智能驾驶和中央计算平台等领域是对现有技术和产品的延伸,虽然会面临一定的困难,但是联想并不是从零开始,过往的技术积累可以发挥不小的作用。众所周知,联想一直没有涉足芯片领域,因此引入英伟达的雷神芯片将帮助联想补齐最重要的一块短板。
根据英伟达的介绍,雷神这款 SoC 芯片内部拥有 770 亿个晶体管,可以实现 2000 TOPS 的 AI 算力,或者是 2000 TFLOPs,其在算力上不仅已经远远超过了满足高等级自动驾驶的需要,已经完全有能力承担起汽车高算力中央计算平台的重任。这款芯片将在 2025 年大规模量产,而这个也和联想在 2025 年推出高算力的中央计算平台的时间表相吻合。
在此之前,联想会推出算力达到 32TOPS 的行泊一体方案,而这也是目前被不少国内车企,尤其是在低成本车型上广泛应用的驾驶辅助解决方案,市场前景较为看好。
不过对于国内汽车领域来说,已经有不少像联想这样的跨界玩家入局,甚至已经上车量产;对于联想来说,除了首发英伟达自动驾驶域控制器的一级制造商的先发优势外,还有哪些优势能让它赢得市场,还是未知数。
Omniverse,英伟达征战车圈的新工具
在汽车行业,英伟达的触角不仅仅是提供自动驾驶算力平台以及中央计算平台,其早已经将目光投向了汽车零部件的设计以及整车制造领域。通过赋能汽车行业的虚拟制造和虚拟工厂,英伟达希望让汽车设计和生产的数字化进程再上一个新的台阶。
在过去几十年里,CATIA、UG 这些软件已经成为工程师必不可少的助手。整车企业使用这些虚拟仿真软件,通过数字化模拟的手段提前对后期的成品进行预览的方法来进行前期的零部件设计以及整车的总布置工作。如果没有前期的虚拟仿真,后期重新设计不仅成本较高,而且很有可能造成项目的时间节点的延误。
但最近十多年来,这些软件都没有突破性的革命成为席卷全球的 AI 浪潮的「法外之地」,没有能够对整车企业的零部件设计提供更大的帮助。
为此,英伟达打造了 Omniverse,它说到底是一个虚拟世界仿真引擎,不仅可以精确反映真实的物理世界,同时也能够遵守物理学定理。所以 Omniverse 不仅能够在前期验证零部件与整车的装配关系,避免后期的包括动态干涉在内的各种装配上的问题,同时也能指导工厂设计,并帮助整车企业对工厂布局进行持续优化。
对于绝大部分希望全面转型电动车的传统车企来说,工厂的改造任务非常繁重。前期虚拟阶段验证地越充分,后期实际占用工厂时间就会越少,而节约出来的时间就可以被用来进行生产。
根据 GTC 现场黄仁勋的介绍,宝马时下正在使用 Omniverse 来对全球 30 家工厂的运营进行规划。在每座工厂正式投入量产前两年,宝马就会使用 Omniverse 模拟建造一座完整的虚拟工厂,并进行持续的调整和优化,以此避免后期工厂建设完毕之后再进行比较大规模的调整,进而影响生产。
宝马之外,包括沃尔沃、通用汽车、奔驰、捷豹路虎、Lotus、丰田等都已经是英伟达 Omniverse 的用户。
从某种程度上来说,未来英伟达很有可能利用自己的优势地位来逐步取代我们熟悉的 CATITA 和 UG,成为整车企业的数字化设计工具。而这个所能撬动的,同样是一个体量巨大且前景非常可观的市场。
最后
「生成式 AI 正在推动 AI 的快速应用,并重塑无数行业。」 在 ChatGPT 之后,相信没有人再会去怀疑这句话。汽车行业只是英伟达当前涉足的一个产业而已,可能深深埋藏在老黄心底的,是让 AI 去赋能整个社会的方方面面,以此来推动全世界科技的进步和产业发展的梦想。
AI 的「iPhone 时刻」,也正是英伟达「核弹发射」的时刻。
【本文来自易车号作者GeekCar极客汽车,版权归作者所有,任何形式转载请联系作者。内容仅代表作者观点,与易车无关】
人工智能产业发展深度报告:格局、潜力与展望
人
工智能(Artificial Intelligence,AI)是利用机器学习和数据分析方法赋予机器模拟、延伸
近年来, 在大数据、算法和计算机能力三大要素的共同驱动下,人工智能进入高速发展阶段。
人工智能市场格局
人工智能赋能实体经济,为生产和生活带来革命性的转变。 人工智能作为新一轮产业变革 的核心力量,将重塑生产、分配、交换和消费等经济活动各环节,催生新业务、新模式和 新产品。从衣食住行到医疗教育,人工智能技术在 社会 经济各个领域深度融合和落地应用。同时,人工智能具有强大的经济辐射效益,为经济发展提供强劲的引擎。据埃森哲预测, 2035 年,人工智能将推动中国劳动生产率提高 27%,经济总增加值提升 7.1 万亿美元。
多角度人工智能产业比较
战略部署:大国角逐,布局各有侧重
全球范围内,中美“双雄并立”构成人工智能第一梯队,日本、英国、以色列和法国等发 达国家乘胜追击,构成第二梯队。同时,在顶层设计上,多数国家强化人工智能战略布局, 并将人工智能上升至国家战略,从政策、资本、需求三大方面为人工智能落地保驾护。后起之秀的中国,局部领域有所突破。中国人工智能起步较晚,发展之路几经沉浮。自 2015 年以来,政府密集出台系列扶植政策,人工智能发展势头迅猛。由于初期我国政策 侧重互联网领域,资金投向偏向终端市场。因此,相比美国产业布局,中国技术层(计算 机视觉和语音识别)和应用层走在世界前端,但基础层核心领域(算法和硬件算力)比较 薄弱,呈“头重脚轻”的态势。当前我国人工智能在国家战略层面上强调系统、综合布局。
美国引领人工智能前沿研究,布局慢热而强势。 美国政府稍显迟缓,2019 年人工智能国 家级战略(《美国人工智能倡议》)才姗姗来迟。但由于美国具有天时(5G 时代)地利(硅 谷)人和(人才)的天然优势,其在人工智能的竞争中已处于全方位领先状态。总体来看, 美国重点领域布局前沿而全面,尤其是在算法和芯片脑科学等领域布局超前。此外,美国聚焦人工智能对国家安全和 社会 稳定的影响和变革,并对数据、网络和系统安全十分重视。
伦理价值观引领,欧洲国家抢占规范制定的制高点。 2018 年,欧洲 28 个成员国(含英国) 签署了《人工智能合作宣言》,在人工智能领域形成合力。从国家层面来看,受限于文化和语言差异阻碍大数据集合的形成,欧洲各国在人工智能产业上不具备先发优势,但欧洲 国家在全球 AI 伦理体系建设和规范的制定上抢占了“先机”。欧盟注重探讨人工智能的社 会伦理和标准,在技术监管方面占据全球领先地位。
日本寻求人工智能解决 社会 问题。 日本以人工智能构建“超智能 社会 ”为引领,将 2017 年确定为人工智能元年。由于日本的数据、技术和商业需求较为分散,难以系统地发展人 工智能技术和产业。因此,日本政府在机器人、医疗 健康 和自动驾驶三大具有相对优势的 领域重点布局,并着力解决本国在养老、教育和商业领域的国家难题。
基础层面:技术薄弱,芯片之路任重道远
基础层由于创新难度大、技术和资金壁垒高等特点,底层基础技术和高端产品市场主要被欧美日韩等少数国际巨头垄断。 受限于技术积累与研发投入的不足,国内在基础层领域相 对薄弱。具体而言,在 AI 芯片领域,国际 科技 巨头芯片已基本构建产业生态,而中国尚 未掌握核心技术,芯片布局难以与巨头抗衡;在云计算领域,服务器虚拟化、网络技术 (SDN)、 开发语音等核心技术被掌握在亚马逊、微软等少数国外 科技 巨头手中。虽国内 阿里、华为等 科技 公司也开始大力投入研发,但核心技术积累尚不足以主导产业链发展;在智能传感器领域,欧洲(BOSCH,ABB)、美国(霍尼韦尔)等国家或地区全面布局传 感器多种产品类型,而在中国也涌现了诸如汇顶 科技 的指纹传感器等产品,但整体产业布 局单一,呈现出明显的短板。在数据领域,中国具有的得天独厚的数据体量优势,海量数 据助推算法算力升级和产业落地,但我们也应当意识到,中国在数据公开力度、国际数据 交换、统一标准的数据生态系统构建等方面还有很长的路要走。
“无芯片不 AI”,以 AI 芯片为载体的计算力是人工智能发展水平的重要衡量标准,我们 将对 AI 芯片作详细剖析,以期对中国在人工智能基础层的竞争力更细致、准确的把握。
依据部署位置,AI 芯片可划分为云端(如数据中心等服务器端)和终端(应用场景涵盖手 机、 汽车 、安防摄像头等电子终端产品)芯片;依据承担的功能,AI 芯片可划分为训练和 推断芯片。训练端参数的形成涉及到海量数据和大规模计算,对算法、精度、处理能力要 求非常高,仅适合在云端部署。目前,GPU(通用型)、FPGA(半定制化)、ASIC(全定制化)成为 AI 芯片行业的主流技术路线。不同类型芯片各具优势,在不同领域呈现多 技术路径并行发展态势。我们将从三种技术路线分别剖析中国 AI 芯片在全球的竞争力。
GPU(Graphics Processing Unit)的设计和生产均已成熟,占领 AI 芯片的主要市场份 额。GPU 擅长大规模并行运算,可平行处理海量信息,仍是 AI 芯片的首选。据 IDC 预测, 2019 年 GPU 在云端训练市场占比高达 75%。在全球范围内,英伟达和 AMD 形成双寡头 垄断,尤其是英伟达占 GPU 市场份额的 70%-80%。英伟达在云端训练和云端推理市场推 出的 GPU Tesla V100 和 Tesla T4 产品具有极高性能和强大竞争力,其垄断地位也在不断 强化。目前中国尚未“入局”云端训练市场。由于国外 GPU 巨头具有丰富的芯片设计经 验和技术沉淀,同时又具有强大的资金实力,中国短期内无法撼动 GPU 芯片的市场格局。
FPGA(Field Programmable Gate Array)芯片具有可硬件编程、配置高灵活性和低能耗等优点。FPGA 技术壁垒高,市场呈双寡头垄断:赛灵思(Xilinx)和英特尔(Intel)合计 占市场份额近 90%,其中赛灵思的市场份额超过 50%,始终保持着全球 FPGA 霸主地位。 国内百度、阿里、京微齐力也在部署 FPGA 领域,但尚处于起步阶段,技术差距较大。
ASIC(Application Specific Integrated Circuits)是面向特定用户需求设计的定制芯片, 可满足多种终端运用。尽管 ASIC 需要大量的物理设计、时间、资金及验证,但在量产后, 其性能、能耗、成本和可靠性都优于 GPU 和 FPGA。与 GPU 与 FPGA 形成确定产品不 同,ASIC 仅是一种技术路线或方案,着力解决各应用领域突出问题及管理需求。目前, ASIC 芯片市场竞争格局稳定且分散。我国的 ASIC 技术与世界领先水平差距较小,部分领域处于世界前列。在海外,谷歌 TPU 是主导者;国内初创芯片企业(如寒武纪、比特大陆和地平线),互联网巨头(如百度、华为和阿里)在细分领域也有所建树。
总体来看 ,欧美日韩基本垄断中高端云端芯片,国内布局主要集中在终端 ASIC 芯片,部分领域处于世界前列,但多以初创企业为主,且尚未形成有影响力的“芯片−平台−应用” 的生态,不具备与传统芯片巨头(如英伟达、赛灵思)抗衡的实力;而在 GPU 和 FPGA 领域,中国尚处于追赶状态,高端芯片依赖海外进口。
技术层面:乘胜追击,国内头部企业各领风骚
技术层是基于基础理论和数据之上,面向细分应用开发的技术。 中游技术类企业具有技术 生态圈、资金和人才三重壁垒,是人工智能产业的核心。相比较绝大多数上游和下游企业聚焦某一细分领域、技术层向产业链上下游扩展较为容易。该层面包括算法理论(机器学 习)、开发平台(开源框架)和应用技术(计算机视觉、智能语音、生物特征识别、自然 语言处理)。众多国际 科技 巨头和独角兽均在该层级开展广泛布局。近年来,我国技术层 围绕垂直领域重点研发,在计算机视觉、语音识别等领域技术成熟,国内头部企业脱颖而 出,竞争优势明显。但算法理论和开发平台的核心技术仍有所欠缺。
具体来看,在算法理论和开发平台领域,国内尚缺乏经验,发展较为缓慢。 机器学习算法是人工智能的热点,开源框架成为国际 科技 巨头和独角兽布局的重点。开源深度学习平台 是允许公众使用、复制和修改的源代码,是人工智能应用技术发展的核心推动力。目前, 国际上广泛使用的开源框架包括谷歌的 TensorFlow、脸书的 Torchnet 和微软的 DMTK等, 美国仍是该领域发展水平最高的国家。我国基础理论体系尚不成熟,百度的 PaddlePaddle、 腾讯的 Angle 等国内企业的算法框架尚无法与国际主流产品竞争。
在应用技术的部分领域,中国实力与欧美比肩。 计算机视觉、智能语音、自然语言处理是三大主要技术方向,也是中国市场规模最大的三大商业化技术领域。受益于互联网产业发 达,积累大量用户数据,国内计算机视觉、语音识别领先全球。自然语言处理当前市场竞 争尚未成型,但国内技术积累与国外相比存在一定差距。
作为落地最为成熟的技术之一,计算机视觉应用场景广泛。 计算机视觉是利用计算机模拟 人眼的识别、跟踪和测量功能。其应用场景广泛,涵盖了安防(人脸识别)、医疗(影像诊断)、移动互联网(视频监管)等。计算机视觉是中国人工智能市场最大的组成部分。据艾瑞咨询数据显示,2017 年,计算机视觉行业市场规模分别为 80 亿元,占国内 AI 市 场的 37%。由于政府市场干预、算法模型成熟度、数据可获得性等因素的影响,计算机视觉技术落地情况产生分化。我国计算机视觉技术输出主要在安防、金融和移动互联网领域。而美国计算机视觉下游主要集中在消费、机器人和智能驾驶领域。
计算机视觉技术竞争格局稳定,国内头部企业脱颖而出。 随着终端市场工业检测与测量逐 渐趋于饱和,新的应用场景尚在 探索 ,当前全球技术层市场进入平稳的增长期,市场竞争格局逐步稳定,头部企业技术差距逐渐缩小。中国在该领域技术积累丰富,技术应用和产 品的结合走在国际前列。2018 年,在全球最权威的人脸识别算法测试(FRVT)中,国内 企业和研究院包揽前五名,中国技术世界领先。国内计算机视觉行业集中度高,头部企业 脱颖而出。据 IDC 统计,2017 年,商汤 科技 、依图 科技 、旷视 科技 、云从 科技 四家企业 占国内市场份额的 69.4%,其中商汤市场份额 20.6%排名第一。
应用层面:群雄逐鹿,格局未定
应用场景市场空间广阔,全球市场格局未定。 受益于全球开源社区,应用层进入门槛相对较低。目前,应用层是人工智能产业链中市场规模最大的层级。据中国电子学会统计,2019 年,全球应用层产业规模将达到360.5 亿元,约是技术层的1.67 倍,基础层的2.53 倍。 在全球范围内,人工智能仍处在产业化和市场化的 探索 阶段,落地场景的丰富度、用户需 求和解决方案的市场渗透率均有待提高。目前,国际上尚未出现拥有绝对主导权的垄断企 业,在很多细分领域的市场竞争格局尚未定型。
中国侧重应用层产业布局,市场发展潜力大。 欧洲、美国等发达国家和地区的人工智能产 业商业落地期较早,以谷歌、亚马逊等企业为首的 科技 巨头注重打造于从芯片、操作系统 到应用技术研发再到细分场景运用的垂直生态,市场整体发展相对成熟;而应用层是我国 人工智能市场最为活跃的领域,其市场规模和企业数量也在国内 AI 分布层级占比最大。据艾瑞咨询统计,2019 年,国内77%的人工智能企业分布在应用层。得益于广阔市场空间以及大规模的用户基础,中国市场发展潜力较大,且在产业化应用上已有部分企业居于 世界前列。例如,中国 AI+安防技术、产品和解决方案引领全球产业发展,海康威视和大 华股份分别占据全球智能安防企业的第一名和第四名。
整体来看 ,国内人工智能完整产业链已初步形成,但仍存在结构性问题。从产业生态来看, 我国偏重于技术层和应用层,尤其是终端产品落地应用丰富,技术商业化程度比肩欧美。 但与美国等发达国家相比,我国在基础层缺乏突破性、标志性的研究成果,底层技术和基 础理论方面尚显薄弱。初期国内政策偏重互联网领域,行业发展追求速度,资金投向追捧 易于变现的终端应用。人工智能产业发展较为“浮躁”,导致研发周期长、资金投入大、 见效慢的基础层创新被市场忽略。“头重脚轻”的发展态势导致我国依赖国外开发工具、 基础器件等问题,不利于我国人工智能生态的布局和产业的长期发展。短期来看,应用终 端领域投资产出明显,但其难以成为引导未来经济变革的核心驱动力。中长期来看,人工智能发展根源于基础层(算法、芯片等)研究有所突破。
透析人工智能发展潜力
基于人工智能产业发展现状,我们将从智能产业基础、学术生态和创新环境三个维度,对 中国、美国和欧洲 28 国人工智能发展潜力进行评估,并使用熵值法确定各指标相应权重 后,利用理想值法(TOPSIS 法)构建了一个代表人工智能发展潜力整体情况的综合指标。
从智能产业基础的角度
产业化程度:增长强劲,产业规模仅次美国
中国人工智能尚在产业化初期,但市场发展潜力较大。 产业化程度是判断人工智能发展活 力的综合指标,从市场规模角度,据 IDC 数据,2019 年,美国、西欧和中国的人工智能 市场规模分别是 213、71.25 和 45 亿美元,占全球市场份额依次为 57%、19%和 12%。中国与美国的市场规模存在较大差异,但近年来国内 AI 技术的快速发展带动市场规模高速增长,2019 年增速高达 64%,远高于美国(26%)和西欧(41%)。从企业数量角度, 据清华大学 科技 政策研究中心,截至 2018 年 6 月,中国(1011 家)和美国(2028 家) 人工智能企业数全球遥遥领先,第三位英国(392 家)不及中国企业数的 40%。从企业布局角度,据腾讯研究院,中国 46%和 22%的人工智能企业分布在语音识别和计算机视觉 领域。横向来看,美国在基础层和技术层企业数量领先中国,尤其是在自然语言处理、机器学习和技术平台领域。而在应用层面(智能机器人、智能无人机),中美差距略小。展 望未来,在政策扶持、资本热捧和数据规模先天优势下,中国人工智能产业将保持强劲的 增长态势,发展潜力较大。
技术创新能力:专利多而不优,海外布局仍有欠缺
专利申请量是衡量人工智能技术创新能力和发展潜质的核心要素。在全球范围内,人工智 能专利申请主要来源于中国、美国和日本。2000 年至 2018 年间,中美日三国 AI 专利申 请量占全球总申请量的 73.95%。中国虽在 AI 领域起步较晚,但自 2010 年起,专利产出 量首超美国,并长期雄踞申请量首位。
从专利申请领域来看, 深度学习、语音识别、人脸识别和机器人等热门领域均成为各国重 点布局领域。其中,美国几乎全领域领跑,而中国在语音识别(中文语音识别正确率世界 第一)、文本挖掘、云计算领域优势明显。具体来看,多数国内专利于 AI 科技 热潮兴起后 申请,并集中在应用端(如智能搜索、智能推荐),而 AI 芯片、基础算法等关键领域和前 沿领域专利技术主要仍被美国掌握。由此反映出中国 AI 发展存在基础不牢,存在表面繁 荣的结构性不均衡问题。
中国 AI 专利质量参差不齐,海外市场布局仍有欠缺。 尽管中国专利申请量远超美国,但技术“多而不强,专而不优”问题亟待调整。其一,中国 AI 专利国内为主,高质量 PCT 数量较少。PCT(Patent Cooperation Treaty)是由 WIPO 进行管理,在全球范围内保护 专利发明者的条约。PCT 通常被为是具有较高的技术价值。据中国专利保护协会统计,美国 PCT 申请量占全球的 41%,国际应用广泛。而中国 PCT 数量(2568 件)相对较少, 仅为美国 PCT 申请量的 1/4。目前,我国 AI 技术尚未形成规模性技术输出,国际市场布 局欠缺;其二,中国实用新型专利占比高,专利废弃比例大。我国专利类别包括发明、实 用新型专利和外观设计三类,技术难度依次降低。中国拥有 AI 专利中较多为门槛低的实 用新型专利,如 2017 年,发明专利仅占申请总量的 23%。此外,据剑桥大学报告显示, 受高昂专利维护费用影响,我国 61%的 AI 实用新型和 95%的外观设计将于 5 年后失效, 而美国 85.6%的专利仍能得到有效保留。
人才储备:供需失衡,顶尖人才缺口大
人才的数量与质量直接决定了人工智能的发展水平和潜力。目前,全球人工智能人才分布 不均且短缺。据清华大学统计,截至 2017 年,人才储备排名前 10 的国家占全球总量的 61.8%。欧洲 28 国拥有 43064 名人工智能人才,位居全球第一,占全球总量的 21.1%。美国和中国分别以 28536、18232 列席第二、第三位。其中,中国基础人才储备尤显薄弱。根据腾讯研究院,美国 AI 技术层人才是中国 2.26 倍,基础层人才数是中国的 13.8 倍。
我国人工智能人才供需严重失衡,杰出人才缺口大。 据 BOSS 直聘测算,2017 年国内人 工智能人才仅能满足企业 60%的需求,保守估计人才缺口已超过 100 万。而在部分核心领域(语音识别、图像识别等), AI 人才供给甚至不足市场需求的 40%,且这种趋势随 AI 企业的增加而愈发严重。在人工智能技术和应用的摸索阶段,杰出人才对产业发展起着 至关重要的作用,甚至影响技术路线的发展。美国(5158 人)、欧盟(5787 人)依托雄 厚的科研创新能力和发展机会聚集了大量精英,其杰出人才数在全球遥遥领先,而中国杰 出人才(977 人)比例仍明显偏低,不足欧美的 1/5。
人才流入率和流出率可以衡量一国生态体系对外来人才吸引和留住本国人才的能力。 根据 Element AI 企业的划分标准,中国、美国等国家属于 AI 人才流入与流出率均较低的锚定 国(Anchored Countries),尤其是美国的人工智能人才总量保持相对稳定。具体来看, 国内人工智能培育仍以本土为主,海外人才回流中国的 AI 人才数量仅占国内人才总量的 9%,其中,美国是国内 AI人才回流的第一大来源大国,占所有回流中国人才比重的 43.9%。 可见国内政策、技术、环境的发展对海外人才的吸引力仍有待加强。
从学术生态的角度
技术创新能力:科研产出表现强劲,产学融合尚待加强
科研能力是人工智能产业发展的驱动力。从论文产出数量来看,1998-2018 年,欧盟、中国、美国位列前三,合计发文量全球占比 69.64%。近些年,中国积极开展前瞻性 科技 布 局, AI发展势头强劲,从1998年占全球人工智能论文比例的8.9%增长至2018年的28.2%, CAGR17.94%。2018 年,中国以 24929 篇 AI 论文居世界首位。中国研究活动的活跃从 侧面体现在人工智能发展潜力较大。
我国论文影响力仍待提高,但与欧美差距逐年缩小。 FWCI(Field-Weighted Citation Impact, 加权引用影响力)指标是目前国际公认的定量评价科研论文质量的最优方法,我们利用 FWCI 表征标准化1后的论文影响力。当 FWCI≥1 时,代表被考论文质量达到或超过了世 界平均水平。近 20 年,美国的 AI 论文加权引用影响力“独领风骚”,2018 年,FWCI 高 于全球平均水平的 36.78%;欧洲保持相对平稳,与全球平均水平相当;中国 AI 领域论文 影响力增幅明显,2018 年,中国 FWCI 为 0.80,较 2010 年增长 44.23%,但论文影响力仍低于世界平均水平的 20%。从高被引前 1%论文数量来看,美国和中国高质量论文产出 为于全球第一、第二位,超出第三位英国论文产出量近 4 倍。综合来看,中国顶尖高质量 论文产出与美国不分伯仲,但整体来看,AI 论文影响力与美国、欧美仍有差距。
从发文主体来看,科研机构和高校是目前中国人工智能知识生产的绝对力量,反映出科研成 果转化的短板。 而美国、欧盟和日本则呈现企业、政府机构和高校联合参与的态势。据Scopus 数据显示,2018 年,美国企业署名 AI 论文比例是中国的 7.36 倍,欧盟的 1.92 倍。2012 年 至 2018 年,美国企业署名 AI 论文比例增长 43pct,同期中国企业署名 AI 论文仅增长 18pct。 此外,人工智能与市场应用关联密切,校企合作论文普遍存在。而我国校-企合作论文比例仅为 2.45%,与以色列(10.06%)、美国(9.53%)、日本(6.47%)差别较大。从产学结合的角度, 中国人工智能研究以学术界为驱动,企业在科研中参与程度较低,或难以实现以市场为导向。
中国人工智能高校数量实位于第二梯队,实力比肩美国。高校是人工智能人才供给和论文 产出的核心载体。 据腾讯研究院统计,全球共 367 所高校设置人工智能相关学科,其中, 美国(168 所)独占鳌头,占据全球的 45.7%。中国拥有 20 所高校与英国并列第三,数 量上稍显逊色。此外,中国高校实力普遍上升,表现强劲。据麻省理工学院 2019 年发布的AI 高校实力 Top20 榜单中,中国清华大学、北京大学包揽前两名,较 2018 年分别上 升 1 个和 3 个名次。
从创新环境的角度
研发投入:中美研发投入差距收窄
中国研发高投入高强度,在全球研发表现中占据重要地位。 从研发投入的角度,美国、中国、日本和德国始终是全球研发投入的主力军。据 IDC 统计显示,2018 年四国的研发投 入总和占全球总量的比例已达 60.77%。其中,美国凭借其强大的研发实力连续多年位居 全球研发投入的榜首。近年来,中国研发投入呈现一路猛增的强进势头,据 Statista 统计, 国内 2019 年研发投入额为 5192 亿美元,仅次于美国。且趋势上与美国差距不断缩小, 2000 年至 2019 年,CAGR 高达 14.43%,同期美国 CAGR 仅 2.99%。由于经济疲软等 诸多原因,欧盟与日本则呈现较为缓慢的上升趋势。据研发投入与强度增长的趋势推测, 中国或在 1-2 年内取代美国的全球研发领先地位。从研发强度的角度,中国研发强度总体 上呈逐步攀升的趋势,且涨幅较大。但对创新活动投入强度的重视程度仍与美国和日本存 在差距。2018 年中国研发强度 1.97%,低于日本和美国 1.53、0.87 个百分点。
资本投入:资金多而项目缺,资本投向侧重终端市场
中美是全球人工智能“融资高地”。 人工智能开发成本高,资本投入成为推动技术开发的主力。在全球范围内,美国是人工智能新增企投融资领先者,据 CAPIQ 数据显示,2010 年至 2019 年 10 月,美国 AI 企业累计融资 773 亿美元,领先中国 320 亿美元,占全球总 融资额的 50.7%。尤其是特朗普政府以来,人工智能投资力度逐步加码。中国作为全球第 二大融资体,融资总额占全球 35.5%。考虑到已有格局和近期变化,其他国家和地区难以 从规模上撼动中美两国。从人工智能新增企业数量来看,美国仍处于全球领先地位。2010 至 2018 年,美国累计新增企业数量 7022 家,较约是中国的 8 倍(870 家)。中国每年新 增人工智能企业在 2016 年达到 179 家高点后逐渐下降,近两年分别是 179 家( 2017 年), 151 家(2018 年),表明中国资本市场对 AI 投资也日趋成熟和理性。整体来看,中国人 工智能新增企业增势缓慢,但融资总额涨幅迅猛。这一“资金多而项目缺”的态势或是行 业泡沫即将出现的预警。
相比较美国,中国资本投向侧重易落地的终端市场。 从融资层面来看,中国各领域发展较 为均衡,应用层是突出领域,如自动驾驶、计算机学习与图像、语音识别和无人机技术领 域的新增融资额均超过美国。而美国市场注重底层技术的发展。据腾讯研究院数据显示, 芯片和处理器是美国融资最多的领域,占总融资额的 31%。当前中国对人工智能芯片市场 高度重视,但受限于技术壁垒和投资门槛高,国内芯片融资处于弱势。
基于信息熵的 TOPSIS 法:综合指标评估
数据结果显示,美国综合指标及三大项目指标评分绝对领先,中国第二,欧洲 28 国暂且落后。 具体来看,美国在人工智能人才储备、创新产出、融资规模方面优势明显。中国作为后起之秀,尽管有所赶超,但总体水平与美国相比仍有差距,尤其是杰出人才资源、高 质量专利申请上存在明显的缺陷和短板。但在论文数量和影响力、研发投入等指标上,中国正快速发展,与美国差距收窄。从各指标具体分析来看,我国人工智能研究主要分布在 高校和科研机构,企业参与度较低,产出成果较多呈现条块化、碎片化现象,缺乏与市场 的系统性融合,这将不利于中国人工智能技术的发展和产业优势的发挥。此外,我国科研 产出、企业数量和融资领域集中于产业链中下游,上游核心技术仍受制于国外企业。未来, 若国内底层技术领域仍未能实现突破,势必导致人工智能产业发展面临瓶颈。
展望
转自丨 信息化协同创新专委会
墨芯S30算力超英伟达H100夺第一,是否实至名归?
单卡算力是世界佰第一,在所有度的芯片中都知是速度最快的,衜占有相当大的度优势。
MLPerf是业内公认的国际威望AI功能基准评测,由图灵奖得主大卫·帕特森结合谷歌、英伟达 、英特尔、Facebook、海潮等全球AI领军企业,和来自哈佛大学、斯坦福大学等学术机构的研讨人员创建。从竞争者角度看,墨芯参与的ResNet-50和BERT-Large都是data中间最经常使用主流模子,因而竞争尤其剧烈。特殊是竞争者包含H100,是英伟达迄今推出的最强大的GPU,据悉运用台积电最新的4纳米工艺,可谓最强王者。
而打败“最强王者”,足以表现墨芯S30采取12nm,功能已然站活着界顶尖程度,该测评以其规范严格、测评严谨而著称,英伟达、高通等国际AI芯片企业均携最强产品参与测评,竞争非常剧烈,各赛道均有数百项产品提交成果,中国AI芯片企业第一次逾越英伟达史上最强GPU、将来4nm产品——H100:中国AI芯片明星创业公司——墨芯人工智能,S30计算卡以95784 FPS的单卡算力,夺得Resnet-50模子算力全球第一。
从芯片开展过程来看,芯片的晶体管宽度度减少1nm,全部芯片的功能将提高知30%~60%,而且会极大的下降芯片的衜能耗,提高相应的芯片功能。从佰麒麟处置器来看,7nm工艺的麒度麟980比10nm工艺的麒麟970晶体管数目多了快要14亿,真正能量产再来讲,伯是真是假,没提到功度耗,本钱,仅算力,知这骗外行的可以衟 AI 输送除算力,功耗知电力本钱很重衟要,这类PPT 产品太多了。