公理是如何产生的?
2024-09-24 13:19:20 来源 : 网络 作者 : 魔法林财经网
数学的公理是什么意思?
公理是依据人类理性的不证自明的基本事实,经过人类长期反复实践的考验,不需要再加证明的基本命题。除了重言式之外,没有任何事物可被推导,若没有任何事物被假定的话。公理即是导出特定一套演绎知识的基本假设。公理不证自明,而所有其他的断言(若谈论的是数学,则为定理)则都必须借助这些基本假设才能被证明。然而,对数学知识的解释从古至今已不太一样,且最终“公理”这一词对今日的数学家眼中和在亚里斯多德和欧几里得眼中的意思也有了些许的不同。古希腊人认为几何学也是数种科学的其中之一,且视几何学的定理和科学事实有同等地位。他们发展并使用逻辑演绎方法来作为避免错误的方法,并以此来建构及传递知识。亚里斯多德的后分析篇是对定义、公理、定理、推论、命题和引理的区别是什么?
公理: 1) 经过人类长期反复的实践检验是真实的,不需要由其他判断加以证明的命题和原理。 2) 某个演绎系统的初始命题。这样的命题在该系统内是不需要其他命题加以证明的,并且它们是推出该系统内其他命题的基本命题。 定理: 1、通过真命题[1](公理或其他已被证明的定理)出发,经过受逻辑限制的演绎推导,证明为正确的结论的命题或公式,例如“平行四边形的对边相等”就是平面几何中的一个定理。 2、一般来说,在数学中,只有重要或有趣的陈述才叫定理,证明定理是数学的中心活动。相信为真但未被证明的数学叙述为猜想,当它被证明为真后便是定理。它是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述,可以不公理的定义是什么?
公理”:是人们在长期实践中总结出来的基本数学知识并作为判定其它命题真假的根据 公理是一些前提假设,这些前提假设规定了整个理论的最基本的概念之间的关系,它们并不需要任何事实和经验的支持,只要它们本身在逻辑上没有矛盾就可以了.它们不能被推出,因为它们是最基本的东西.所有的定理都是由公理推出来的. 一个典型的例子是非欧几何的基本公理,它们提出时并没有任何事实和经验的支持,而且是违反直观的,尽管后来发现确实有事实支持这样一种几何的存在,但这并不能说明公理一定是需要经验的.数学中什么是公理
首先,公理是真命题,即它是正确的。 其次,公理是不需要证明的,或者说它不能用比它更简单的命题来证明它的正确性,但人们却认可它。定理,定律,公理的区别和概念分别是?
定理,定律,公理的区别是:定理是建立在公理和假设基础上,经过严格的推理和证明得到的。定律是一种理论模型,它用以描述特定情况、特定尺度下的现实世界,在其它尺度下可能会失效或者不准确。而公理是经过长期实践后公认为正确的命题。 公理的正确性不需要用逻辑推理来证明,而定理的正确性需要逻辑推理来证明。在物理学中而定理是通过数学工具(如微积分)推理得来的,如动能定理;定律是由实验得出或验证的,如机械能守恒定律。 1. 定理,用推理的方法判断为真的命题叫做定理。 2. 定律,是为实践和事实所证明,反映事物在一定条件下发展变化的客观规律的论断。 3. 公理,是指依据人类理性的不证自明的基本事实,经过人类长期反