数据分析员工作怎么样啊?
数据分析师的就业前景如何?
可以先来看几个数据,据猎聘数据显示,数据分析师的平均薪资在20k+,应届生的平均月薪都在10k+。目前数据分析能力已成为各行业必备的通用能力。研究显示,有数据分析能力的人工资比一般人多30%,而没有数据分析能力的人失业率是一般人的2倍。
数据分析师不仅在薪资上有巨大优势,这个职位在未来将会持续有巨大的缺口。据麦肯锡咨询权威预测2025年中国将需数据人才高达220万。
麦肯锡的预测并不是空穴来风。我们调研了目前市场上的数据分析师招聘数量,以boss直聘为例,第一个截图展现了成都地区数据分析师的岗位需求数量,可以看到多个数据分析师的职位需求量都在10k+。
在了解了数据分析师的大范围行业前景和行业薪资后,我们现在就来深入给大家剖析一下数据分析师的发展晋升之路。
总得来说,初级数据分析师可以往两个方向发展:技术岗和非技术岗。这其实就是需要在“业务”或“技术”上选择一个方向。如果一个初级数据分析师希望在业务上深耕,可以选择的职位有两个,一个是数据运营,另一个是数据产品经理。
数据运营是运营岗位的一个分支,岗位职责是需要懂得运营业务模型,并要求能通过数据分析优化运营决策。而数据产品经理,是需要懂得产品业务模型,需要通过数据分析来优化产品功能。
初级数据分析师如果选择技术方向发展,可选择的职位也有很多,例如算法工程师、大数据开发、数据科学家等等。对这些岗位的职责,可以参考下列的解释。
1、算法工程师
运用数理统计知识、编程和业务思维建立数学模型,是当之无愧的产品灵魂。
2、数据开发工程师
数据工程师属于技术岗,负责搭建数据库、处理数据、维护数据安全等工作,主要是服务于数据的使用者,比如上文中的数据分析师、数据产品经理以及数据建模师。
3、数据科学家
数据科学家属于综合性人才,集数据分析能力(>数据分析师)、统计学基础、业务能力(>数据产品)、算法(>算法工程师)与沟通能力于一身。这类人才属于数据分析行业中的顶配,各方面的能力都超一流,不过这类人才相当稀有,在行业中基本是可遇而不可求。
最后说完了数据分析师的职业发展方向,再回归到最重要的行业本质吧。选择一个行业或职位最本质的因素就是赛道。这个道理很简单,人需要在一个天花板不断上升的行业,个人职业的发展的天花板才能跟着往上走。我们都知道只有在路很宽,人不挤的赛道上才能够跑得快,也只有在一个资本都涌入的市场上才挣到更多钱。
综上所述,数据分析师的就业前景是非常好的,如果你想要成为一名优秀的数据分析师,要先找到自己的方向,确立一个职业目标,再逐步掌握数据分析师的必备技能,在软件的基础操作上不断提升自己的应用。
数据分析师的就业前景如何?
数据分析师的就业前景是广阔的。
1、人才缺口大,IT时代逐渐被DT时代取代,用理性的数据分析代人工的经验分析成为主流,数据分析人才的供给指数仅为0.05,属于高度稀缺。
2、入门相对简单数据分析是一门跨领域技术,不需要很强的理工科背景,反而那些有市场销售、金融、财务或零售业背景的人士,分析思路更加开阔。
3、薪资待遇高1-2年工作经验的大数据分析岗位的平均月薪可达到13k左右的水平。岗位的薪酬和经验正相关,越老越值钱。
4、行业适应性强几乎所有的行业都会应用到数据,数据分析师不仅仅可以在互联IT行业就业,也可以在银行、零售、医药业、制造业和交通传输等领域服务。
5、职业寿命长数据分析职业一旦掌握,可以在职场上收益长久,掌握这门新兴技术都会大有用武之地,受其他外部业务影响相对较小,职位相对稳定。
数据分析师怎么样?
前景很好,虽然数据分析师是在互联网企业发展出来的,但是随着大数据的发展,越来越多的传统行业也认识到数据分析的重要性,赋予了更多数据分析师的职能。在招聘数据分析师的企业当中,可以很容易看到知名互联网公司、世界五百强的身影,并且需求量非常大。
数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。
扩展资料
技能要求
1、懂业务。
从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。
一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
数据分析这个岗位的前景如何?
数据分析这个岗位的前景肯定是好的,但是对于个人来说,想要在这个行业就业,还是更看重是否具备这种能力。
之所以会怎么说,是因为现在是一个大数据的时代,很多的商业活动都会涉及到数据分析这个领域,可以说它是创业或者开展某项商业活动的基础,只有通过分析数据,才能更好的开展商业项目。正是如此,对于数据分析员岗位专业性要求还是很高,所以对于个人来说,如果想要在数据分析领域有所发展,提升自己的能力更加重要。
一、重点培养数据分析员。
为了适应大数据的经济体系,改变我国目前项目数据分析专业技术人才缺席的现状,在很早我国就已经开始针对这一问题进行重点培养数据分析人才。在多省连续开展培养这方面人才的计划,05年第一家数据分析事务所在陕西成立,随后有14个省市相继引进了大概共有80家项目数据分析专业机构,而且涉及的行业也越来越广泛。
二、数据分析这个岗位前景光明。
由上述看来,数据分析这个岗位还是很吃香的。特别是现在的时代根本离不开数据分析,有90%的五百强企业中都会构建一个属于自己的数据分析部门。如今,我国数据分析行业发展也是很迅速,各行各业空缺的数据分析岗位也已经快达到20万,也就是说对于这个岗位需求量还是很大。在这样的情况下,我国很多高校还是会重点培养这个岗位上的人才。
三、具备工作能力更重要。
虽然这个岗位就业前景光明,但是不代表每个人都能够胜任这个岗位工作,因此,如果想要从事这个行业岗位,让自己具备这个岗位工作能力是更加重要的。岗位是一个大方向,准确的就业定位还是取决个人,希望大家不要盲目追求工作岗位。
数据分析师这个职业的前景如何?女生做数据分析师会不会很累呢?
女生做数据分析师会很累,下面详细说一下!
做数据分析通常有两种方式:一是对算法进行深入研究,然后进行数据挖掘;二是对业务进行深入了解,然后进行业务。
说实话,我并不相信数据分析本身。为什么不呢?让我们从数据分析的分解开始。大多数数据分析将花费50%的时间记录数据,40%的时间与产品经理沟通:做AB实验和效应回归,10%的时间做探索性分析。现在处于数据分析岗位的位置,可以跳出来说不。
但这些工作中的大多数实际上是可替换的机械工作。读写SQL取号这个工作是一项脏活、累活,人可以取号,雇一个做了五年数据分析的和一个刚毕业的数据分析写SQL的基本没有区别。只是一开始可能不是100%准确。探索性分析是数据分析应该做的工作,但我知道大多数企业数据分析现在还没有做。探索性分析通常需要强大的技术技能或良好的业务知识,这两者都可以使探索性项目有价值。最后,技术过硬的后来基本上都去做算法数据挖掘了,因为他们发现在数据分析这个岗位上因为不断的需求扼杀了人的意志。这些人会没事的,因为过去只做数据挖掘的人,他们大部分都破产了。但事实证明,数据分析对商业更加敏感。
业务优秀的做业务的产品经理,因为原来业务能力很强,数据意识也很强,但需要跟着业务走的不强,数据不强的他背后听命令,谁能受得了呢。而他们自己的数据和业务的结合可以带来更大的价值。所以做数据分析的业务人员通常比普通的产品经理更好。
那么,回到数据分析师的未来何去何从的问题上。在我看来,数据分析本身的发展前景并不是很好。但是有了数据分析的经验,如果我走算法和业务两个方向,未来的发展不会太糟。