如何看待Ai炒股?

2024-02-19 08:23:55 来源 : 网络 作者 : 魔法林财经网

人工智能股票预测靠谱吗

人工智能股票预测不靠谱。人工智能是通过大数据预测的,所谓的人工智能预测只是一个软件。并不能真正起到判断股票价值的作用。
扩展资料:
炒股的人有必要具备如下素质:
1、平常心
炒股者在买入股票后,一般会出现时涨时跌的情况,盈和亏都十分正常。因而,大可不必因赚钱而洋洋得意,因亏钱而垂头丧气,应树立正确的炒股心态,做到“冷眼观胜负,理智对输赢”。从某种角度上讲,股市中没有永远的输家,也没有永远的赢家,输赢转换只在一瞬间。
2、慎对股评
股民对股市信息渴求越来越强烈,股评也因此应运而生。对良莠不齐的股评,股民要谨慎对待、科学区分、合理取舍,减轻对股评人士的依赖、树立正确的投资理念,不盲目跟风。在日常炒股经历中不断加强学习,学会自主决策,把命运掌握在自己手中。
3、调节身心
有不少股民由于没有处理好紧张与松弛的关系,不知疲倦地长期蹲在股市中,其结果是身心疲惫,虽然享受了“牛市”的成果,但也忍受了“熊市”带来的痛苦。辛辛苦苦赚来的钱往往被市场消耗殆尽,赔了时间,费了精力,一无所获。因而处理好紧张与松弛的关系是股民必须掌握的学问。股民应会调节自己,学会休息。休息有时是一种“最好的投资策略”。休息要彻底,它可以修身养性,可以避免风险,可以为投资者制定下一步策略。
4、支配情理
面对风云变幻、风险莫测的股市,炒股需要理智;但面对充满机遇和挑战的股市,炒股又需要激情。在股市中,常有这样两类股民:一类是时时处处谨小慎微,只拿一小部分资金进行操作,既不敢追涨,也不愿杀跌。这类股民虽然具有较强的风险意识,但绝非成熟的股民,他们对行情的变化无动于衷,其结果往往是错过了一次又一次的市场机会;另一类则不知风险为何物,他们紧跟市场热点,与庄共舞,频繁进出,其结果往往是“不成功,则成仁”,要么获得巨大收益,要么被深度套牢。这两类股民都不可能成为成功者。“激情加理智,方成赢家”。炒股该追涨的就要敢于追高,该杀跌的时候要敢于杀跌,该满仓的时候大胆满仓,该轻仓时须果断轻仓,该空仓的时候必须清仓离场。
总而言之,千金难买好心态,好的心态定能赢回千金。
如果你没有准备好,没有风险意识,没有心理承担能力,就不要盲目地进入股市。

听朋友说他用盈首AI全自动炒股机器人炒股,效果很好,请问一下用过的朋友,不知道是否是真的?

应该是真的,现在是人工智能时代,科学炒股是必然选择,国家也在出了很多支持人工智能的政策,之前在各大新闻上看见你说的这个了,有负面就是有利空啦,如果对公司造成实际影响当然股价会下挫。但在A股,利空出来的时候往往意味着主力主动借机打压股价拿筹码,一段时间整理后再抛出利好拉升股票,这就是所谓带血的筹码。不是骗局,很靠谱,我用了几年了,效果很好,最有发言权。而且是国际国内高水平的智能炒股机器人,获得了多项发明专利,盈首AI全自动炒股机器人,我用了几年了,效果很好,而且是全自动交易的,策略是自己可以很方便的设计的。而且不需要自己写编程,只要添加8个数据即可设置交易策略。核心功能编辑,语音,180个模型,180个AI全自动半成品模型,根据人工智能的综合科技,包括神经网络、大数据统计、特殊算法、主力资金流向统计计算等,综合几十种以上影响股票涨跌的因子组合而成的全智能全自动AI策略模型。模型同样具有6个去风险因子的功能,能及时规避大盘的风险和捕捉大盘和个股的上涨机会。自定义编写,用户打开界面后,对于会编程又懂股票的用户如果想要把自己的操作思路编写为策略进行自动交易,可以在自定义策略编写里面用Python语言编写自己的策略。自定义标的。用户如果不愿点击组合策略模型,也不会编写程序,则可以把自己想要操作的标的添加到策略标的添加栏,然后在(自定义)交易资金买卖设定栏,设定自己的参数即可,标的需要每天添加,进行全自动交易。机器人就会按照这些设定的条件长期自动执行这些指令操作。去风险因子,特有的6个AI去风险因子能帮助用户规避掉极大多数系统性风险,能自动预测大盘及个股即将上涨或下跌,能自动在第一时间根据大盘及个股的走势,自动规避大盘及个股下跌风险及自动捕捉住大盘上涨的起点。全自动交易用户用自己组合的策略或自编的策略进行历史回测,验证历史年化收益率达到自己满意后,即可把策略保存在策略保存区,组合一个属于个人独立的全自动交易机器人。策略保存区一般应保存三个策略。保存后,三个策略同时交易,点击自动交易按钮,机器人就会按照这些设定的条件长期自动执行这些指令了。

人工智能可以用来炒股吗

说的神乎其神,人工智能能用来炒股吗?

人工智能在围棋、象棋、德扑等领域都已经取得了碾压式胜利,这已经是一个不争的事实。事实上AlphaGo这样的AI已经可以用于任何需要理解复杂模式、进行长期计划、并制定决策的领域。人们不禁想问,还有什么是人工智能不能克服的吗?譬如说,变幻莫测的A股?

对于这个问题,持各种观点的都不乏其人。探讨它实可以分为两个部分:1. 股市可以预测吗? 2、 假如可以预测,用机器学习的方法去预测可以吗?

先回答第一个问题:股市的涨跌可以预测吗?

如果将股市的价格变化看做一个随时间变化的序列,Price = Market (t), 我们往往会发现,不管是尝试用N个模型(线性,非线性, 概率)来进行逼近,即使是建立了符合股价变化的这样的模型,并且在有足够多的训练数据的情况下模拟出了股价,但是这些模型最多只能在特定的区间能做一些并不十分精准的预测。

首先是ReinforcementLearning, 这个算法基于马尔可夫性,从一个状态预测下一个状态,但是股价的涨跌具有强烈的马尔可夫性吗?也就是上一时刻的股价与下一个时刻的股价间有必然的联系吗?应该是不太大。这种基于N阶马尔可夫性的系统对于股价的分析很不利。而且假如只使用股价的历史数据进行模型的训练的话,准确度可以说几乎为0。

事实上影响股价的因素不仅仅是历史股价,还有更多的因素,公司的近况,股民对股票的态度,政策的影响等等。所以许多人从这方面进行入手,用人工智能提供的快速计算能力,使用合适的模型,来量化这些因素,例如, (政策X出台, 可能会对股价造成变化y元)。当你的模型将所有的因素全都考虑进来, 那么股价的预测就唾手可得了。股价 = f(政策因素, 公司情况,市场因素, 历史股价,上一年历史股价, 某个股民自杀的影响...)

然而这些因素到底有多少? 它们之间会如何影响,这才是问题的关键。在某些稳定的情况下,我们是可以做大概的预测的,但是有很多时候会不准确,这是因为,你的模型很难把所有的 因素都考虑进来。而且因素与因素间还会产生互相影响的情况下。股价的模型将会变得极其复杂。如下图:

一个因素与一个因素之间的互相影响是很可能被预测出来的,但是假如它们之间产生了相互的影响,这时候整个系统就变得几乎不可预测了。一个因素发生变化,会造成好几个因素的变化,最后这几个因素又会反作用回来使上一个因素直接或间接的发生变化,股价变化一下子就变得难以捉摸起来。一些微小的因素也可以通过这种系统无限的放大,最后给股市造成巨大的影响。

那么是不是预测股价是就是不可能的呢?

事实上人工智能远比我们想象的更强大。例如非常繁复的Bayesian reasoning,包括deep learning/deepreinforcement learning,它们都能表示复杂的hidden variables之间的关系。现在国内外也已经有许多公司在探索将人工智能应用于股市的可能性了。

但是这里所说的将人工智能技术应用于股市,大部分不是说让人工智能代替人去做决策,而是利用人工智能在数据处理和不受主观喜好影响上的优势,在投资决策中扮演一个“AI专家顾问系统”的角色,去辅助人类做出更明智的决策。

股市分析包括基本面分析与技术分析两大块,而人工智能技术在这两方面都能发挥作用:

1

基本面分析

简言之,就是读取各类财经资讯。面对网上海量又纷繁复杂的信息,只依靠人脑已经无法解决问题了。我们知道数据挖掘的三个V,(Volume数据大),(Velocity更新快),(Variety多样),在处理这样的海量数据时,计算机相比人脑具有不可比拟的优势。而深度学习在自然语言处理领域的应用,可以做到在海量的信息中做出自动摘要,提取出精华信息以帮助人类进行决策。

另外,股票价格在很大程度上是由买卖双方的力量对比决定的,是由每个股民对某支股票的情绪而决定的。如果大家都很看好一支股票,那么它就很可能会涨;反之会跌。还有一些特定事件会很明显地影响到股票价格,例如今年美国40年来首次开放原油出口后,国内能源版块不出意料下跌了。这也是为什么这么多股民会刷新闻,看动态来保持敏锐的嗅觉。可以看出,在预测股票这件事上,最重要的是信息,或者说是数据,从中挖掘股民的情绪。而情绪识别已经是人工智能所擅长的技术了。国外已经有很多这方面的研究,也有DataMinr这样的公司专注从社交媒体中提取有价值的金融信号。

如下图,美联社官推被黑(谣言奥巴马被袭击受伤),很快股市出现了大幅度下滑-上升(看13点左右)。虽然这个事件较为特殊,但是设想如果能够在第一时间得到类似消息,实际上就掌握了预测股市的主动权。

可以大胆想象,如果将情感分析与机器学习相结合,抓来海量的数据,去做情感分析,大概找出民众对于对某些股票持乐观还是悲观的情绪,那么至少可以将这一因素纳入模型学习范围中。现存的很多论文都是在情感分析上找寻很多办法去提高准确率。其他一些更简单的做法还有:(1)Google Trend。这个是很简单的办法:谷歌提供的搜索量数据,利用搜索量的变化来预测。(2)利用Twitter Volume(相关Twitter的发帖数量)

2. 技术分析

传统技术分析中的K线分析,什么“大阳星”、“小阴星”、“旭日东升”、“穿头破脚”,其实就是人脑的模式识别。受人脑信息处理能力的限制,这些识别出来的模式有以下缺点:(1)只是单条K线的、只是基于一个模糊的形状,似是而非的、没有确切的数字标准的;(2)基于有限的历史信息的。 而好的深度学习策略,可以突破人脑的限制,比如突破单一K线的限制,从更多的财经信号(其他股票、黄金、外汇等)中寻找规律;或是从一个更长时间段的历史信息中识别出规律。

总之,人工智能将提升我们处理信息的深度、广度。使用基于人工智能技术的“智能投顾”的人,将比不运用或是还在利用“人脑”进行基本面分析与技术分析的人占信息优势,从而也就更可能在股市中盈利。

人工智能在证券投资领域的兴起始于2007年。彼时,第一个纯人工智能的投资基金在美国纽约诞生,此后人工智能在证券投研领域的发展步入快车道; 事实上,在证券投资领域,人工智能早已经不是什么新鲜事,量化对冲基金经理遍布于北京金融街、上海陆家嘴。一般来说,公募基金或大型私募的量化投资部由两部分组成,一部分是投研团队,另一部分是IT团队,投研团队提出需求,IT团队做出算法交易的模块,解决基金经理们的需求。

“正常情况下,我每天的工作流程是早上起床后看一下(机器)生成的股票清单,再看看组合管理系统里每个策略配了多少权重,这些策略加起来的仓位又是多少,然后根据机器所给出的信号(卖出或买入)的各类数据(包括融资融券、投资者入场情况等),判断机器给出的信号有没有明显的错误。”一位量化对冲经理说,如果当天需要交易,他就会生成交易指令,再下单到交易系统,交易系统就会开始自动运作。

在传统的投研中,基金经理及研究员们对财务、交易、市场等数据进行建模,分析其显著特征,利用回归分析等传统机器学习算法作出交易策略,到了人工智能阶段,这些工作便交给了计算机。目前,一些私募基金已开始将量化对冲的三个子领域融入日常交易策略中,尝试获取收益,它们包括机器学习、自然语言处理与知识图谱。例如,作为全球最大的对冲基金,桥水联合(Bridgewater Asspcoates)使用的是一种基于历史数据与统计概率的交易算法,让系统能够自主学习市场变化并适应新的信息。

AlphaGo大胜李世石柯洁,引发全世界关注。投射到投研领域,则是以人工智能量化选股和人类基金经理之间的对决。已经证明的是,人工智能选股在规避市场波动下的非理性选择、回避非系统性风险、获取确定性收益方面等更胜一筹,波动率、最大回撤等指标也更低,表现更稳定。

然而,机器虽然动作比人快,但思维还是没人快。比如面对某个新出台的政策、市场热点,基金经理可以立即以此为主线采取行动。但是机器没那么快。这是人的优势。再譬如,机器一次只能做到一个阶段做一个策略,比如供给侧改革,只能想到煤炭、钢铁、有色金属里的股票,但是对基金经理,他就还能同时做价值投资或动量反转等策略。

整体来说,将整个股票投资决策过程全部交给机器,目前来说还属于少部分金融巨头企业才能做到的事情。

美国硅谷“感知力”技术公司让人工智能程序全程负责股票交易,与其他一些运用人工智能的投资公司不同,该公司交易部门只有两名员工负责监控机器,以确保出现不可控情形时可通过关机终止交易。据报道,“感知力”公司的人工智能投资系统可以通过经验学习实现“自主进化”。公司在全球拥有数千台同时运行的机器,其独特算法创造了数万亿被称为“基因”的虚拟交易者。系统利用历史数据模拟交易,目前可在几分钟内模拟1800天的交易量,经过测试,不好的“基因”被剔除,好的“基因”被保留。通过考验的好“基因”被用于真正的交易。公司员工只需设定好时间、回报率、风险指数等交易指标,剩下的一切都交由机器负责。

公司首席投资官杰夫·霍尔曼透露,目前机器在没有人为干预情况下掌握着大量股票,每天完成数以百计的交易,持仓期限为数日到几周。公司说机器的表现已超越他们设定的内部指标,但没有透露指标的具体内容。

随着人工智能技术的持续进步,人工智能投资成为被学术界和资本看好的领域。英国布里斯托尔大学教授克里斯蒂亚尼尼说,股票投资是十大最有可能被人工智能改变的行业之一。另一方面,也不是所有的投资商都信任机器,英国对冲基金曼氏金融首席科学家莱德福警告说,不应过度信任人工智能投资,该领域还远没有成熟。虽然有各种各样具有迷惑性的承诺,很多投资人的钱却有去无回。

AI智能炒股机器人是骗人的吗?

不能说是骗人的。炒股软件也是内行人,专家费心费力,编撰出来的程序,方便大家用来炒股。(个别的,心怀叵测的例外!)有很多新入市的朋友,为了早赚到钱,急于求成,在没有基础知识的情况下,买了炒股软件,再加上运用不得当,不赚反赔,再加上当初买软件的钱,赔的简直是一塌糊涂。话说回来,股市变幻莫测,没有规律可言。什么炒股软件,炒股机器人,都是人制造的。不是什么神仙,法器。不要以为有了这个就能赚钱。认真学习点股市知识,凭着自己的经验,教训,再加上点运气。才是正道。说的对否,请朋友斟酌。不对之处请见谅。

AI都能炒股了,以后就要拼谁的算法牛了

人工智能量化交易平台宣布获得数百万人民币融资。据悉,本轮融资将主要用于团队建设、产品开发和硬件设备投入。 是一家基于人工智能的量化投资公司,成立于2017年10月,主要将技术应用于量化投资领域,实现低风险高收益的投资回报。 中国私、公募基金规模呈大跨步发展,截止2018年2月底,中国私募基金规模已达12.01万亿元,公募资金规模已达12.64万亿,在控制风险的前提下,提高获得投资收益的效率,是公、私募投资最大需求,国外盛行的量化交易越来越被国内机构所接受。 在量化交易这个领域,目前已有不少项目:私人量化交易平台JoinQuant、RiceQuant以及优矿,为量化交易领域提供核心算法支持的众加

相关文章

  • 连续90个涨停板的股票是谁?
    连续90个涨停板的股票是谁?

    历史上连续涨停天数最多的股票是哪一只1、ST长云(现西南证券),2006年停牌前3个涨停,2007年复牌后连续42个涨停,共计45个涨停,股价从2.43元涨至21.86元。2、ST金泰,2007年停牌前4个涨

    2024-02-18
  • 计划经济和金融在核心工作内容上是
    计划经济和金融在核心工作内容上是

    经济学和金融学的有什么区别?工商管理和经济管理的区别如下:1、工作的性质不同经济专业主要是一些事务性的工作。人事部门负责招待领导的决策。而金融专业则包含战略性的工作

    2024-02-18
  • 请大神帮忙分析下浪潮信息这只股票
    请大神帮忙分析下浪潮信息这只股票

    你炒股生涯中买过多少只股票,印象最深刻的是哪几只?我买过的股票不低于100只,具体多少只无法统计,毕竟炒股13年多了,时间太久记不起来。但在买过的股票当中影响最深的有3只股票分

    2024-02-18
  • 炒股为什么越来越年轻化?
    炒股为什么越来越年轻化?

    为什么现在越来越多的年轻人开始炒股?首先是现在的年轻人都有了理财意识,其次觉得自己的收入不够多,最后就是想提高自己的生活品质,所以现在越来越多的年轻人开始炒股。为什么

    2024-02-18
  • 本人中流985工商管理,硕士打算去悉
    本人中流985工商管理,硕士打算去悉

    本科读工商管理,想去美国读金融方向的研究生可以吗?你好,master science finance是没有专业背景限制的,就是说任何专业都可以申请,所以相对来说竞争也很大,但是由于你是工商管理,所

    2024-02-18
  • 华侨城「亚洲」 7 月 17 日全额赎
    华侨城「亚洲」 7 月 17 日全额赎

    全球最大对冲基金持续加码中国资产,从商业的角度如何解读此举?《前不久全球最大对冲基金——桥水基金发布了一份的内部报告,标题很直白,叫做“向中国资产的转向正开始”,核心观点

    2024-02-17
  • 信达证券给予贝泰妮买入评级,从商业
    信达证券给予贝泰妮买入评级,从商业

    多地出招促消费,其中有哪些细节值得关注?如何从商业角度解读此举?多地出招促进消费能力,因为自从疫情爆发之后,很多的地区都遭受到了经济的问题。像有一些城市会选择去发放一些消

    2024-02-17
  • 干股是指什么样的股票?
    干股是指什么样的股票?

    干股是什么干股的释义:股票的一种。 由发股人无偿赠送,持股人不出股金,赚了分红,赔了不受损失。干股[ gān gǔ ]详细解释企业公司中不出股金、赚了分红、赔了不受损失的股份。

    2024-02-17
  • 年末基金公司对哪些股票板块持积极

    主动权益基金去年四季报登场:基金乐观看待后市股票仓位进一步提高首批主动权益基金2022年四季报正式出炉。1月10日,华富基金公司率先披露旗下部分主动权益基金2022年四季度报

    2024-02-17
  • 4 月 28 日信达证券给予淮北矿业买
    4 月 28 日信达证券给予淮北矿业买

    全球最大对冲基金持续加码中国资产,从商业的角度如何解读此举?《前不久全球最大对冲基金——桥水基金发布了一份的内部报告,标题很直白,叫做“向中国资产的转向正开始”,核心观点

    2024-02-17